AsTeC and IAAM Project overview

Thomas F. Patterson, MD IAAM PI

John Wingard, MD AsTeC Co-PI

Invasive Aspergillus Animal Models (IAAM) NIH-NIAID-N01-AI-30041

Thomas F. Patterson, MD IAAM Principal Investigator

Professor of Medicine Chief, Division of Infectious Diseases Director, San Antonio Center for Medical Mycology The University of Texas Health Science Center at San Antonio

Invasive Aspergillus Animal Models (IAAM)

Who are we?

What do we do?

- Establishment of standard animal models
- Address investigator-initiated key questions
- Service funded by NIAID without cost to investigator
- Key questions for Aspergillus diagnostics
 - Pre-clinical evaluation
 - New diagnostic methods or targets
 - Standardization of current diagnostic modalities
 - Collaboration with AsTec

IA Animal Models (IAAM) <u>Principal Investigator</u> *Tom Patterson* <u>Steering Committee</u> *Denning, Filler, May, Nierman, Walsh* • Reviews •Guides <u>Central Unit</u> Administrative Core: *Rick Kirkpatrick/Michelle Bailey*

Expert Advisory Panel A. Casadevall (Chair) J. Rhodes

Functional Components
(Working Groups)Patterson, Filler, Sheppard,Denning, Wickes, Wiederhold, Pollock•Proposes• Develops•Implements• Delivers

ASTEC

Animal Models: Key Features

Mice & larger animals: guinea pigs/rats Pulmonary (aerosol) challenge

Neutropenia/non- neutropenic; other immunosuppression	Continuous blood sampling for surrogate markers	Survival duration allowing for disease progression (4-7 d)
 Differentiate: exposure/colonization/ infection 	Quantify tissue burden (2 methods)	Assess growth dynamics of fungi
Standardized	Local/disseminated infection	■ <i>A. fumigatus</i> (AF293); suitable for others
Telemetry/IR fever curves	Genomic approach to molecular diagnosis	Gene profiling
ASIVE ASPERGILLOSIS ANIMAL MODELS	ASTEC ASPERGILLUS	TECHNOLOGY CONSORTIUM

IAAM: Standard Operating Procedures

www.sacmm.org/iaam.html

INVASIVE ASPERGILLOSIS ANIMAL MODELS

::Home ::About Us

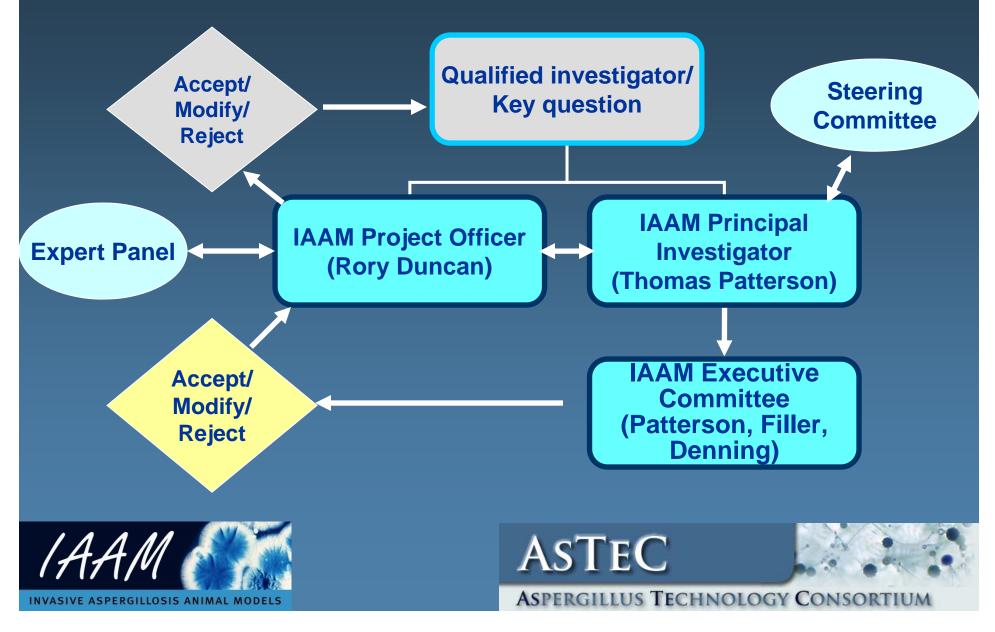
::Resources

::Faculty

::Support ::Publications

MAAT::

S • A • C • M • M


IAAM Standard Operating Procedures

Title	File for download
Standard Operating Procedure for Preparation of Aspergillus fumigatus Test Strains for Inhalational Pulmonary Aspergillosis Animal Studies.	PDF File
Standard Operating Procedure for Murine Inhalational Pulmonary Aspergillosis.	PDF File
Standard Operating Procedure for Guinea Pig Inhalational Pulmonary Aspergillosis	PDF File
Standard Operating Procedure for Animal Tissue Homogenization.	PDF File
Standard Operating Procedure for Processing Animal Tissue Samples for PCR, Galactomannan and Storage.	PDF File
Standard Operating Procedure for Aspergillus spp. DNA Extraction for Quantitative Real- time Folymerase Chain Reaction.	PDF File
Standard Operating Procedure for the Determinaton of Tissue Fungal Burden Utilizing Quantitative Real Time Polymerase Reaction (qPCR).	PDF File

UTHSCSA

Links provided from Health Science Center pages to other web sites do not constitute or imply an endorsement of those sites, their content, or products and services associated with those sites. Best viewed at 1024x768 resolution.

W. Steinbach	Calcineurin pathway in IA	Duke
R. Cramer	Role of <i>gliP</i> in gliotoxin synthesis	Duke
B. Miller	Aspergillus virulence determinants	U Idaho
N. Wiederhold	Genome-wide expression to echinocandins for <i>Af</i>	UTHSCSA
C. Clancy	In vivo gene expression of Af	U Florida
S. Harris	Polarized Hyphal Growth in Af	U Nebraska
R. Akins/J. Sobel	Microfluidic device for rapid pathogenic fungal diagnosis	U Michigan
A. Zaas	Genetic determinants of Af susceptibility	Duke
R. Calderone	Germination in Af	Georgetown
M. Momany	Rho GTPases in polar growth of Af	U Georgia
B. Segal	Development of Aspergillus vaccine	SUNY/Buffalo
D. Perlin	New Diagnostics for Af	New Jersey
C. Selitrennikoff	Prophylactic and therapeutic Aspergillus vaccines	MycoLogics, Inc, Aurora, CO
C. Douglas	QPCR for diagnostics of A. fumigatus	Merck and Co., Inc, Rahway, NJ
J. Loeffler	QPCR for diagnostics of A. fumigatus	University of Wuerzburg, Germany
G. Ramage	Real-Time PCR assay to detect A. fumigatus	Glasgow Caledonian University, Glasgow, Scotland

ASPERGILLUS TECHNOLOGY CONSORTIUM

ASTEC

C. Cray	Murine model of Pulmonary invasive Aspergillosis	University of Miami Miller School of Medicine, Miami FL
D. Sheppard	GM diagnostics in A. fumigatus	McGill University, Montreal Canada
B. Wickes	PCR diagnostics in A. fumigatus	UTHSCSA
S. Filler / D. Sheppard	Host response to invasive aspergillosis	UCLA - Harbor / McGill University
S. Baker	Proteomics approach to A. fumigatus detection	Pacific Northwest National laboratory, Richland, WA
R. Cramer	Metabolomics approach to A. fumigatus detection	Duke
N. Wiederhold	Chitin assay development for pulmonary aspergillosis	UTHSCSA
N. Wiederhold	Effect of paradoxical effect on diagnosis of IPA during echinocandin therapy	UTHSCSA
A. Vallor	utility of serum vs whole blood for assessment of fungal burden in IPA	UTHSCSA
S. Filler / D. Sheppard	Effect of different aspergillus isolates on experimental murine IPA	UCLA - Harbor / McGill University
M. Del Poeta	Detection of anti-glucosylceramide antibody in an Invasive Aspergillosis	Medical Univ. Of S. Carolina, Charleston, SC
R. Lewis	Animal models for diagnosis and treatment (Use of SOPs)	MD Anderson, Houston TX
G. Fuji	Viatrode technology for <i>Aspergillus</i> diagnostics	Molecular GPS
M. Moore	Siderophores in invasive aspergillosis	Simon Fraser University, Burnaby, BC, Canada
T. Sweeny	ABIP in an inhalational model of aspergillosis (Use of SOPs)	Nektar Therapeutics, San Carlos, CA

ASPERGILLUS TECHNOLOGY CONSORTIUM

ASTEC

D. Sheppard	GM diagnostics in A. fumigatus	McGill University, Montreal Canada
W. Furmaga / A Fothergill	Proteomics Approach to Aspergillus Diagnosis	UTHSCSA
S. Kleiboeker	Proprietary qPCR approach to Aspergillus diagnostics	ViraCorp
N. Wiederhold	Serum Beta-Glucan as a Diagnostic Tool	UTHSCSA
C. O'Sullivan	Mass Spectrometry to detect and diagnose Aspergillosis	Barts and the London NHS Trust, London UK
C. Thornton	Lateral flow device for the rapid serodiagnosis of IA	University of Exeter, UK
P. Donneley / J. Loeffler	Extraction methods for PCR diagnostics of A. fumigatus	University of Wuerzburg, Germany
A. Caliendo	Fungal DNA Stability	AsTeC - Emory University
A. Caliendo	Extraction methods for PCR diagnostics of A. fumigatus	AsTeC - Emory University
S. Bauman	Antigen detection for Aspergillus diagnosis	Immuno-Mycologics Inc.
V. Slepnev	Multiplexed PCR for Aspergillus diagnosis	Primera Biologics
S. Glickman	pulsed laser optoacousticspectroscopy	UTHSCSA
J. Schuster	GC / Mass spec	Teotten Diagnostics
D. Himsworth/T. Bright	Fungal Pathogen Detection Panel	Luminex Molecular Diagnostics
N. Clancey	Aspergillus Diagnostics	AsTeC - U. Pittsburgh

ASTEC

Future Directions: Invasive Aspergillosis Animal Models (IAAM)

Deliverables/Model refinement

- SOPs online
- Role of host responses
- Distinction of colonization vs disease
- Development of DNA standard for calibration
- Impact of sample types, collection, storage
- New target development: Innovative Approaches to Target Identification and Assay Development for Fungal Diagnosis (RFA-AI-08-055 <u>http://grants.nih.gov/grants/guide/rfafiles/RFA-AI-08-055.html</u>)
- Diagnostic development with AsTec
 - Pre-clinical support for diagnostics
 - Industry partners
 - Community awareness/interaction

ASTEC

Clinical Laboratory Diagnostics for Invasive Aspergillosis

John Wingard, MD AsTeC Principal Investigator Barbara Alexander, MD AsTeC Co-PI

> NIH-NIAID N01-AI-70023 HHSN266200700023C 5/31/07-5/30/14

Goals of AsTeC Project

 Establish & maintain repository of clinical samples from pts at high risk for &/or infected with Invasive Aspergillosis

 Establish a network of laboratories compliant with Good Laboratory Practices to assess new diagnostic assays for Invasive Aspergillosis

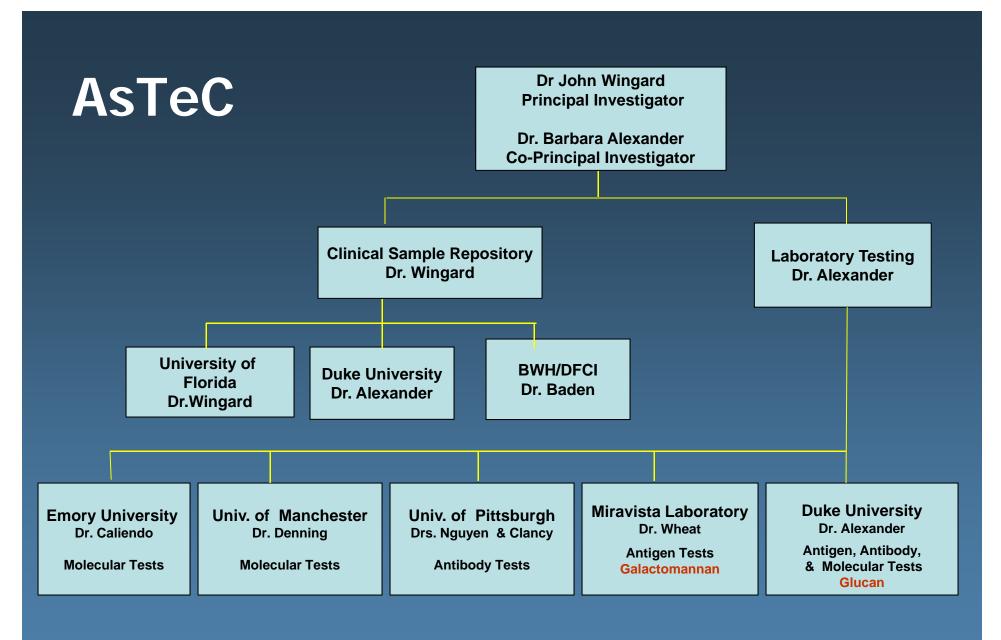
IA = Invasive Aspergillosis

Why is this important?

- Mortality from IA is substantial
- Making the diagnosis is difficult
 - Diagnosis not confirmed by DRC in 26% of pts in large IA treatment trial
 - Cultures negative in half of histologically proven cases
- Other pathogens produce similar clinical syndromes
- Current diagnostics have limitations
- Starting treatment early is associated with better outcomes
- Evaluating treatment responses is difficult

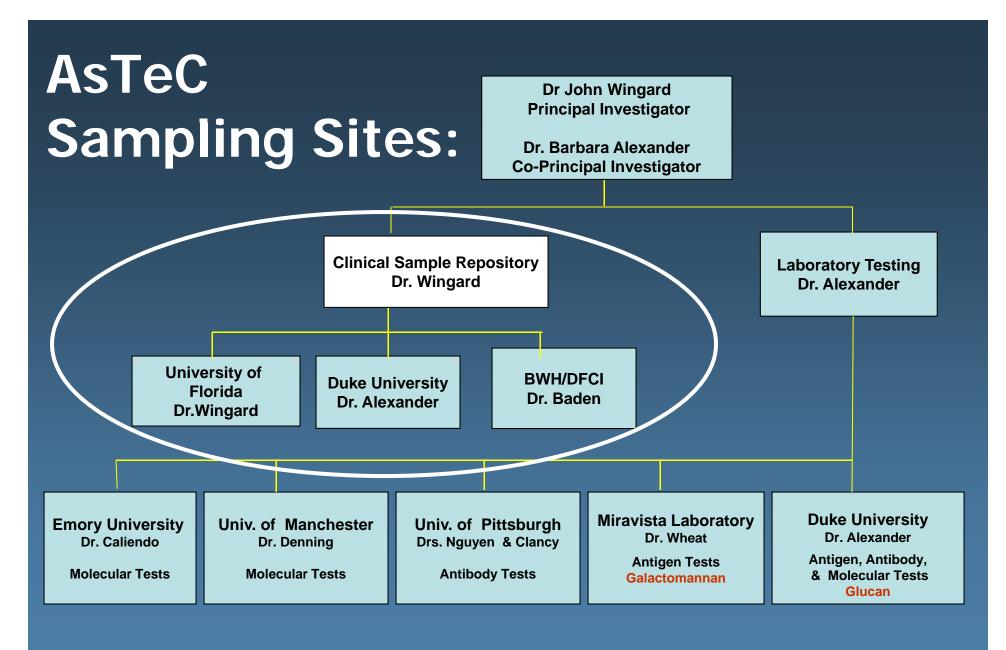
AsTeC Project

Project Officers Alec Ritchie C. Gale Auguste Dennis Dixon

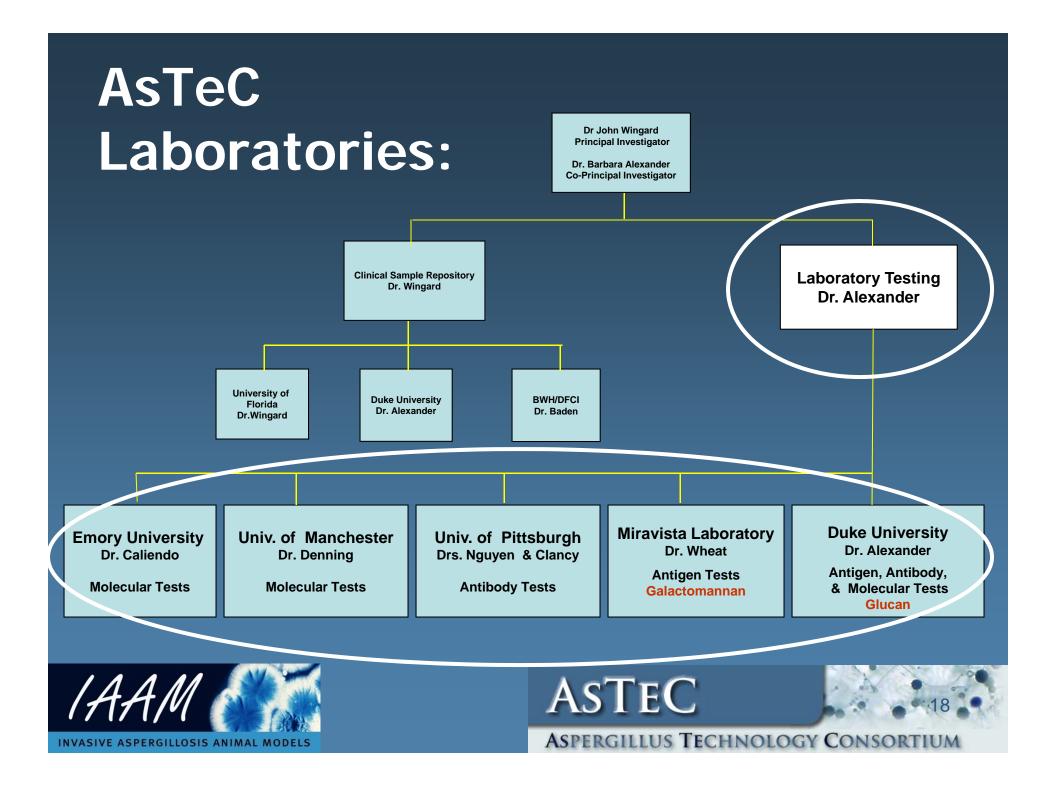

Scientific Working Group David Hillyard Sally Selepak Paul Verweij

NIH/NIAID: #N01-AI-70023

ASTEC



ASPERGILLUS TECHNOLOGY CONSORTIUM


ASTEC

ASPERGILLUS TECHNOLOGY CONSORTIUM

ASTEC

Interactions between AsTeC & IAAM

- Divided responsibilities for testing diagnostics
 - Early work with manufacturers: IAAM
 - Preparatory for licensure: AsTeC
- IAAM will provide standards for repeatability and reproducibility testing
- Regular conference calls
- Coordinated meetings

Interactions between AsTeC & IAAM

Interactive work to date
 Validation of storage conditions
 Contamination testing of collection vials
 Calibrator development

Websites

IAMM www.sacmm.org/iaam.html ASTEC www.astecdiagnostics.org

What we hope to accomplish today

- Discuss animal model developments
- Describe selected promising new diagnostic targets
- Discuss potential of genomic expression for diagnosis
- Describe progress to date
- Ask for your input & suggestions
- Convey how you can access the resources of these two projects

